Prepared by:
HALBORN
Last Updated 04/26/2024
Date of Engagement by: January 9th, 2023 - March 8th, 2023
100% of all REPORTED Findings have been addressed
All findings
5
Critical
1
High
0
Medium
0
Low
1
Informational
3
MatterLabs zkSync Era
is a Layer 2 blockchain protocol that eliminates Ethereum’s inherent congestion with zero knowledge proofs. Matter Labs' creation is on a mission to accelerate the mass adoption of crypto for personal sovereignty. It is designed to unlock the full potential of trustless blockchain technology while scaling the core values of Ethereum.
MatterLabs engaged Halborn to conduct a security audit on their zero knowledge circuits and the verifier, beginning on 2023-01-09 and ending on 2023-03-08. The security assessment was scoped to the circuits provided to the Halborn team.
The team at Halborn was provided two months for the engagement and assigned a full-time security engineer to audit the security of the zero knowledge circuits and the verifier. The security engineer is a blockchain, smart-contract and ZK security expert with advanced penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain protocols.
The purpose of this audit to achieve the following:
Ensure that the circuits operate as intended.
Identify potential security issues within the circuits.
Ensure that the verifier operate as intended.
Identify potential security issues within the verifier contracts.
In summary, Halborn identified some security risks that were mostly addressed by the MatterLabs team.
Halborn performed a combination of manual and automated security testing to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this audit. While manual testing is recommended to uncover flaws in logic, process, and implementation; automated testing techniques help enhance coverage of the bridge code and can quickly identify items that do not follow security best practices. The following phases and associated tools were used throughout the term of the audit:
Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Circuit manual code review and walkthrough.
Graphing out functionality and circuit logic/connectivity/functions. (cargo-deps
)
Manual code review of common Rust security vulnerabilities.
Manual code review of specific zero knowledge security vulnerabilities.
Scanning of circuits files for unsafe Rust code usage. (cargo-geiger
)
Static Analysis of security for scoped circuits, and imported functions. (cargo-audit
)
1. IN-SCOPE:
The security assessment was scoped to the following zero knowledge circuits:
/src/vm/*
/src/glue/sort_decommitments_requests/*
/src/glue/code_unpacker_sha256/*
/src/glue/demux_log_queue/*
/src/precompiles/keccak256.rs
/src/precompiles/sha256.rs
/src/glue/ecrecover_circuit/*
/src/glue/ram_permutation/*
/src/glue/storage_validity_by_grand_product/*
/src/glue/storage_application/*
/src/glue/pub_data_hasher/*
/src/glue/log_sorter/*
/src/glue/merkleize_l1_messages/*
/src/scheduler/*
/src/circuit_structures/*
/src/data_structures/*
/src/inputs/*
/src/recursion/*
/src/traits/*
/src/secp256k1/*
/src/utils.rs
Commit ID : 014e674916058e31725d6e92439fa5ff14e6677e
And the verifier:
/zksync/Verifier.sol
/zksync/Plonk4VerifierWithAccessToDNext.sol
/zksync/libraries/PairingsBn254.sol
/zksync/libraries/TranscriptLib.sol
Commit ID : fc7e86a3df404acb88d86502c944c0630a7ed288
2. REMEDIATION PR/COMMITS:
Fix Commit ID (HAL-01) :
5109e0768c7de799f87ec67bf40b6a544cca4e4e
Fix Commit ID (HAL-02) :
b0a79356613655bddccaab3b89dbf1142b5483fb
Fix Commit ID (HAL-03):
06c2e76546369fb112d8ac14fb5388154857435b
EXPLOITABILITY METRIC () | METRIC VALUE | NUMERICAL VALUE |
---|---|---|
Attack Origin (AO) | Arbitrary (AO:A) Specific (AO:S) | 1 0.2 |
Attack Cost (AC) | Low (AC:L) Medium (AC:M) High (AC:H) | 1 0.67 0.33 |
Attack Complexity (AX) | Low (AX:L) Medium (AX:M) High (AX:H) | 1 0.67 0.33 |
IMPACT METRIC () | METRIC VALUE | NUMERICAL VALUE |
---|---|---|
Confidentiality (C) | None (I:N) Low (I:L) Medium (I:M) High (I:H) Critical (I:C) | 0 0.25 0.5 0.75 1 |
Integrity (I) | None (I:N) Low (I:L) Medium (I:M) High (I:H) Critical (I:C) | 0 0.25 0.5 0.75 1 |
Availability (A) | None (A:N) Low (A:L) Medium (A:M) High (A:H) Critical (A:C) | 0 0.25 0.5 0.75 1 |
Deposit (D) | None (D:N) Low (D:L) Medium (D:M) High (D:H) Critical (D:C) | 0 0.25 0.5 0.75 1 |
Yield (Y) | None (Y:N) Low (Y:L) Medium (Y:M) High (Y:H) Critical (Y:C) | 0 0.25 0.5 0.75 1 |
SEVERITY COEFFICIENT () | COEFFICIENT VALUE | NUMERICAL VALUE |
---|---|---|
Reversibility () | None (R:N) Partial (R:P) Full (R:F) | 1 0.5 0.25 |
Scope () | Changed (S:C) Unchanged (S:U) | 1.25 1 |
Severity | Score Value Range |
---|---|
Critical | 9 - 10 |
High | 7 - 8.9 |
Medium | 4.5 - 6.9 |
Low | 2 - 4.4 |
Informational | 0 - 1.9 |
Critical
1
High
0
Medium
0
Low
1
Informational
3
Security analysis | Risk level | Remediation Date |
---|---|---|
CIRCUIT NOT PROPERLY WORKING WHEN USING SHARD ID > 0 | Critical | Solved - 04/04/2023 |
HEAD STATE NOT ENFORCED TO BE ZERO | Low | Solved - 04/04/2023 |
UNUSED CIRCUIT FUNCTIONALITY | Informational | Solved - 04/04/2023 |
QUEUE NOT ENFORCED TO BE EMPTY RIGHT AFTER POPPING ALL ELEMENTS | Informational | Acknowledged - 04/04/2023 |
UNNEEDED INITIALIZATION OF UINT256 VARIABLES | Informational | Acknowledged - 04/04/2023 |
// Critical
The STORAGE QUERIES FILTER
circuit (storage_validity_by_grand_product
) does not produce the intended output when shard ID is greater than 0
. When the keys of each element of the initial queue are being packed throughout the sorting of the queues, the second linear combination is wrongly created, overlapping the bits of the address variable, due to using the incorrect coefficient.
The problem with this bug, is that as the pack_key
function is returning an incorrect packed key to the sorting functionality, the final sorted queue of the circuit is not being properly generated, leading to even more issues afterward. This can be seen as a completeness bug.
const PACKED_WIDTHS: [usize; 2] = [192, 232];
// now resolve a logic
for (item, is_trivial) in it {
// check if keys are equal and check a value
let TimestampedStorageLogRecord { record, timestamp } = item;
let packed_key = pack_key(
cs,
(record.shard_id.clone(), record.address.clone(), record.key),
)?;
// ensure sorting
let (keys_are_equal, previous_key_is_greater) =
prepacked_long_comparison(cs, &previous_packed_key, &packed_key, &PACKED_WIDTHS)?;
can_not_be_false_if_flagged(cs, &previous_key_is_greater.not(), &is_trivial.not())?;
// if keys are the same then timestamps are sorted
let (_, previous_timestamp_is_less) = previous_timestamp.sub(cs, ×tamp)?;
// enforce if keys are the same and not trivial
let must_enforce = smart_and(cs, &[keys_are_equal, is_trivial.not()])?;
can_not_be_false_if_flagged(cs, &previous_timestamp_is_less, &must_enforce)?;
// we follow the procedure:
// if keys are different then we finish with a previous one and update parameters
// else we just update parameters
pub fn pack_key<E: Engine, CS: ConstraintSystem<E>>(
cs: &mut CS,
key_tuple: (Byte<E>, UInt160<E>, UInt256<E>),
) -> Result<[Num<E>; 2], SynthesisError> {
let shifts = compute_shifts::<E::Fr>();
// LE packing
let (shard_id, address, key) = key_tuple;
let mut lc_0 = LinearCombination::zero();
lc_0.add_assign_number_with_coeff(&key.inner[0].inner, shifts[0]);
lc_0.add_assign_number_with_coeff(&key.inner[1].inner, shifts[64]);
lc_0.add_assign_number_with_coeff(&key.inner[2].inner, shifts[128]);
// 192 in total
let value_0 = lc_0.into_num(cs)?;
let mut lc_1 = LinearCombination::zero();
lc_1.add_assign_number_with_coeff(&key.inner[3].inner, shifts[0]);
lc_1.add_assign_number_with_coeff(&address.inner, shifts[64]);
lc_1.add_assign_number_with_coeff(&shard_id.inner, shifts[160]);
let value_1 = lc_1.into_num(cs)?;
// 64 + 160 + 8 = 232 in total
Ok([value_0, value_1])
}
SOLVED: The MatterLabs team
solved the issue by fixing the offset and adding assertion.
Commit ID :
5109e0768c7de799f87ec67bf40b6a544cca4e4e
// Low
The MESSAGES EVENTS FILTER
circuit (log_sorter
) is not enforcing the head state of the initial queue received as input to be zero. Even though the LOG DEMULTIPLEXER
circuit gives as output all queues that were initially empty, already enforcing the head state to be zero, it is essential to ensure it is atomically checked in each circuit, regardless of where the input is coming from.
let structured_input_witness = project_ref!(witness, closed_form_input).cloned();
let initial_queue_witness = project_ref!(witness, initial_queue_witness).cloned();
let intermediate_sorted_queue_state =
project_ref!(witness, intermediate_sorted_queue_state).cloned();
let sorted_queue_witness = project_ref!(witness, sorted_queue_witness).cloned();
let mut structured_input = EventsDeduplicatorInputOutput::alloc_ignoring_outputs(
cs,
structured_input_witness.clone(),
)?;
Boolean::enforce_equal(cs, &structured_input.start_flag, &Boolean::constant(true))?;
let mut initial_queue = StorageLogQueue::from_raw_parts(
cs,
structured_input
.observable_input
.initial_log_queue_state
.head_state,
structured_input
.observable_input
.initial_log_queue_state
.tail_state,
structured_input
.observable_input
.initial_log_queue_state
.num_items,
)?;
// dbg!(initial_queue.clone().into_state().create_witness());
if let Some(wit) = initial_queue_witness {
initial_queue.witness = wit;
}
SOLVED: The MatterLabs team
solved the issue by enforcing the initial queue head state to zero.
Commit ID :
b0a79356613655bddccaab3b89dbf1142b5483fb
// Informational
Within the LOG DEMULTIPLEXER
circuit (demux_log_queue
) the demultiplex_storage_logs_inner
function is declared but never used. The demultiplex_storage_logs_inner_optimized
function is used instead.
pub fn demultiplex_storage_logs_inner<
E: Engine,
CS: ConstraintSystem<E>,
R: CircuitArithmeticRoundFunction<E, 2, 3, StateElement = Num<E>>,
>(
cs: &mut CS,
mut storage_log_queue: StorageLogQueue<E>,
round_function: &R,
limit: usize,
) -> Result<[StorageLogQueue<E>; NUM_SEPARATE_QUEUES], SynthesisError> {
assert!(limit <= u32::MAX as usize);
let mut optimizer = SpongeOptimizer::new(round_function.clone(), 3);
let mut rollup_storage_queue = StorageLogQueue::empty();
// let mut porter_storage_queue = StorageLogQueue::empty();
let mut events_queue = StorageLogQueue::empty();
let mut l1_messages_queue = StorageLogQueue::empty();
let mut keccak_calls_queue = StorageLogQueue::empty();
let mut sha256_calls_queue = StorageLogQueue::empty();
let mut ecdsa_calls_queue = StorageLogQueue::empty();
const SYSTEM_CONTRACTS_OFFSET_ADDRESS: u16 = 1 << 15;
const KECCAK256_ROUND_FUNCTION_PRECOMPILE_ADDRESS: u16 = SYSTEM_CONTRACTS_OFFSET_ADDRESS + 0x10;
const SHA256_ROUND_FUNCTION_PRECOMPILE_ADDRESS: u16 = 0x02; // as in Ethereum
const ECRECOVER_INNER_FUNCTION_PRECOMPILE_ADDRESS: u16 = 0x01; // as in Ethereum
let keccak_precompile_address = UInt160::from_uint(u160::from_u64(
KECCAK256_ROUND_FUNCTION_PRECOMPILE_ADDRESS as u64,
));
let sha256_precompile_address = UInt160::from_uint(u160::from_u64(
SHA256_ROUND_FUNCTION_PRECOMPILE_ADDRESS as u64,
));
let ecrecover_precompile_address = UInt160::from_uint(u160::from_u64(
ECRECOVER_INNER_FUNCTION_PRECOMPILE_ADDRESS as u64,
));
for _ in 0..limit {
let execute = storage_log_queue.is_empty(cs)?.not();
// let n = cs.get_current_step_number();
let popped = storage_log_queue.pop_first(cs, &execute, round_function)?;
// dbg!(cs.get_current_step_number() - n); // 291
let is_storage_aux_byte =
Num::equals(cs, &aux_byte_for_storage().inner, &popped.aux_byte.inner)?;
let is_event_aux_byte =
Num::equals(cs, &aux_byte_for_event().inner, &popped.aux_byte.inner)?;
let is_l1_message_aux_byte =
Num::equals(cs, &aux_byte_for_l1_message().inner, &popped.aux_byte.inner)?;
let is_precompile_aux_byte = Num::equals(
cs,
&aux_byte_for_precompile_call().inner,
&popped.aux_byte.inner,
)?;
let is_keccak_address = UInt160::equals(cs, &keccak_precompile_address, &popped.address)?;
let is_sha256_address = UInt160::equals(cs, &sha256_precompile_address, &popped.address)?;
let is_ecrecover_address =
UInt160::equals(cs, &ecrecover_precompile_address, &popped.address)?;
let is_rollup_shard = popped.shard_id.inner.is_zero(cs)?;
let execute_rollup_storage =
smart_and(cs, &[is_storage_aux_byte, is_rollup_shard, execute])?;
let execute_porter_storage =
smart_and(cs, &[is_storage_aux_byte, is_rollup_shard.not(), execute])?;
Boolean::enforce_equal(cs, &execute_porter_storage, &Boolean::constant(false))?;
let execute_event = smart_and(cs, &[is_event_aux_byte, execute])?;
let execute_l1_message = smart_and(cs, &[is_l1_message_aux_byte, execute])?;
let execute_keccak_call =
smart_and(cs, &[is_precompile_aux_byte, is_keccak_address, execute])?;
let execute_sha256_call =
smart_and(cs, &[is_precompile_aux_byte, is_sha256_address, execute])?;
let execute_ecrecover_call =
smart_and(cs, &[is_precompile_aux_byte, is_ecrecover_address, execute])?;
// let n = cs.get_current_step_number();
rollup_storage_queue.push_with_optimizer(
cs,
LogType::RollupStorage as u64,
&popped,
&execute_rollup_storage,
&mut optimizer,
)?;
// porter_storage_queue.push_with_optimizer(cs, LogType::PorterStorage as u64, &popped, &execute_porter_storage, &mut optimizer)?;
events_queue.push_with_optimizer(
cs,
LogType::Events as u64,
&popped,
&execute_event,
&mut optimizer,
)?;
l1_messages_queue.push_with_optimizer(
cs,
LogType::L1Messages as u64,
&popped,
&execute_l1_message,
&mut optimizer,
)?;
keccak_calls_queue.push_with_optimizer(
cs,
LogType::KeccakCalls as u64,
&popped,
&execute_keccak_call,
&mut optimizer,
)?;
sha256_calls_queue.push_with_optimizer(
cs,
LogType::Sha256Calls as u64,
&popped,
&execute_sha256_call,
&mut optimizer,
)?;
ecdsa_calls_queue.push_with_optimizer(
cs,
LogType::ECRecoverCalls as u64,
&popped,
&execute_ecrecover_call,
&mut optimizer,
)?;
// dbg!(cs.get_current_step_number() - n); // 96
// let n = cs.get_current_step_number();
optimizer.enforce(cs)?;
// dbg!(cs.get_current_step_number() - n); // 338
let expected_bitmask_bits = [
is_storage_aux_byte,
is_event_aux_byte,
is_l1_message_aux_byte,
is_precompile_aux_byte,
];
let (is_bitmask, all_flags_are_false) =
check_if_bitmask_and_if_empty(cs, &expected_bitmask_bits)?;
can_not_be_false_if_flagged(cs, &is_bitmask, &Boolean::Constant(true))?;
can_not_be_false_if_flagged(cs, &all_flags_are_false.not(), &execute)?;
}
storage_log_queue.enforce_to_be_empty(cs)?;
let all_queues = [
rollup_storage_queue,
events_queue,
l1_messages_queue,
keccak_calls_queue,
sha256_calls_queue,
ecdsa_calls_queue,
];
Ok(all_queues)
}
SOLVED: The MatterLabs team
solved the issue by removing the unused function.
Commit ID :
06c2e76546369fb112d8ac14fb5388154857435b
// Informational
The MERKLEIZER
circuit (merkleize_l1_messages
) does not enforce the initial queue to be empty right after popping all elements. Even though it does it at the end of the circuit, as this circuit is resource-consuming while computing the linear hash and the Merkle tree hash, it would be useful to enforce it before all the hashing functionality for better readability of the overall code and optimization.
for chunk in linear_hash_input[4..].chunks_exact_mut(MESSAGE_SERIALIZATION_BYTES) {
let can_pop = initial_queue.is_empty(cs)?.not();
let item = initial_queue.pop_first(cs, &can_pop, round_function)?;
let serialized = item.serialize(cs)?;
assert_eq!(chunk.len(), serialized.len());
for (dst, src) in chunk.iter_mut().zip(serialized.iter()) {
*dst = Byte::conditionally_select(cs, &can_pop, src, dst)?;
}
}
let linear_hash = if output_linear_hash {
println!(
"Computing linear hash over {} bytes",
linear_hash_input.len()
);
let pubdata_hash = tree_hasher.hash(cs, &linear_hash_input)?;
let pubdata_hash_as_bytes32 = Bytes32::from_bytes_array(&pubdata_hash);
pubdata_hash_as_bytes32
} else {
Bytes32::empty()
};
// a little bit tricky: unsafe cast, but we checked the length, and ABI wise it's guaranteed
// later on we can use split_array_ref
let leafs_only_bytes = &linear_hash_input[4..];
assert!(leafs_only_bytes.len() % MESSAGE_SERIALIZATION_BYTES == 0);
let mut leafs = vec![];
for chunk in leafs_only_bytes.chunks_exact(MESSAGE_SERIALIZATION_BYTES) {
let leaf_encoding: [_; MESSAGE_SERIALIZATION_BYTES] = chunk.to_vec().try_into().unwrap();
leafs.push(leaf_encoding);
}
println!("Computing tree over {} leafs", leafs.len());
let calculated_merkle_root =
circuit_compute_merkle_root_from_leafs_generic::<_, _, H, ARITY>(cs, &leafs, tree_hasher)?;
initial_queue.enforce_to_be_empty(cs)?;
ACKNOWLEDGED: The MatterLabs team
acknowledged this issue. It will be addressed while moving to the new proof system.
// Informational
As i
is an uint256
, it is already initialized to 0. uint256 i = 0
reassigns the 0 to i
which wastes gas.
Verifier.sol
for (uint256 i = 0; i < public_inputs.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < STATE_WIDTH; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.quotient_poly_parts_commitments.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.state_polys_openings_at_z.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.state_polys_openings_at_z_omega.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.gate_selectors_openings_at_z.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.copy_permutation_polys_openings_at_z.length; i = i.uncheckedInc()) {
Plonk4VerifierWithAccessToDNext.sol
for (uint256 i = 0; i < vk.num_inputs; i = i.uncheckedInc()) {
for (uint256 i = 0; i < STATE_WIDTH; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.quotient_poly_parts_commitments.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.state_polys_openings_at_z.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.state_polys_openings_at_z_omega.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.gate_selectors_openings_at_z.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.copy_permutation_polys_openings_at_z.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < lagrange_poly_numbers.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < vk.num_inputs; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.copy_permutation_polys_openings_at_z.length; i = i.uncheckedInc()) {
for (uint256 i = 0; i < proof.state_polys_openings_at_z.length; ) {
for (uint256 i = 0; i < STATE_WIDTH - 1; i = i.uncheckedInc()) {
for (uint256 i = 0; i < STATE_WIDTH - 1; i = i.uncheckedInc()) {
for (uint256 i = 0; i < STATE_WIDTH; i = i.uncheckedInc()) {
for (uint256 i = 0; i < STATE_WIDTH - 1; i = i.uncheckedInc()) {
PairingsBn254.sol
for (uint256 i = 0; i < elements; ) {
ACKNOWLEDGED: The MatterLabs team
acknowledged this issue.
Halborn used automated testing techniques to enhance the coverage of certain areas of the scoped circuits. Among the tools used was cargo geiger, a tool that lists statistics related to the usage of unsafe Rust code in a Rust crate and all its dependencies. After Halborn verified all the circuits in the repository and was able to compile them correctly, cargo geiger was run on the all-scoped circuits.
As a result of the tests carried out with the cargo geiger tool, the results were obtained and reviewed by Halborn
. Based on the results reviewed, all warnings were determined to not pose a security issue.
Halborn used automated security scanners to assist with detection of well-known security issues, and to identify low-hanging fruits on the targets for this engagement. Among the tools used was cargo audit, a command-line utility which inspects Cargo.lock files and compares them against the RustSec Advisory Database, a community database of security vulnerabilities maintained by the Rust Secure Code Working Group. Cargo audit performed a scan on all the circuits.
No major issues found by cargo audit.
Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.
// Download the full report
* Use Google Chrome for best results
** Check "Background Graphics" in the print settings if needed