Prepared by:
HALBORN
Last Updated 03/18/2025
Date of Engagement: March 6th, 2025 - March 6th, 2025
100% of all REPORTED Findings have been addressed
All findings
1
Critical
0
High
0
Medium
0
Low
0
Informational
1
Moonwell
engaged Halborn
to conduct a security assessment on their smart contracts beginning on March 6th, 2025 and ending on March 7th. The security assessment was scoped to the smart contracts provided in the moonwell-fi/moonwell-contracts-v2 GitHub repository. Commit hash and further details can be found in the Scope section of this report.
Halborn
was provided three days for the engagement, and assigned one full-time security engineer to review the security of the smart contracts in scope. The engineer is a blockchain and smart contract security expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of multiple blockchain protocols.
The purpose of the assessment is to:
Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.
In summary, Halborn identified one improvement to reduce the likelihood and impact of risks, which was acknowledged by the Moonwell team
.
Update the Solidity compiler version to a current one - 0.8.x or equivalent.
Halborn
performed a combination of manual and automated security testing to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is recommended to uncover flaws in logic, process, and implementation; automated testing techniques help enhance coverage of the code and can quickly identify items that do not follow the security best practices. The following phases and associated tools were used during the assessment:
Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph
).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither
).
Testnet deployment (Foundry
).
EXPLOITABILITY METRIC () | METRIC VALUE | NUMERICAL VALUE |
---|---|---|
Attack Origin (AO) | Arbitrary (AO:A) Specific (AO:S) | 1 0.2 |
Attack Cost (AC) | Low (AC:L) Medium (AC:M) High (AC:H) | 1 0.67 0.33 |
Attack Complexity (AX) | Low (AX:L) Medium (AX:M) High (AX:H) | 1 0.67 0.33 |
IMPACT METRIC () | METRIC VALUE | NUMERICAL VALUE |
---|---|---|
Confidentiality (C) | None (I:N) Low (I:L) Medium (I:M) High (I:H) Critical (I:C) | 0 0.25 0.5 0.75 1 |
Integrity (I) | None (I:N) Low (I:L) Medium (I:M) High (I:H) Critical (I:C) | 0 0.25 0.5 0.75 1 |
Availability (A) | None (A:N) Low (A:L) Medium (A:M) High (A:H) Critical (A:C) | 0 0.25 0.5 0.75 1 |
Deposit (D) | None (D:N) Low (D:L) Medium (D:M) High (D:H) Critical (D:C) | 0 0.25 0.5 0.75 1 |
Yield (Y) | None (Y:N) Low (Y:L) Medium (Y:M) High (Y:H) Critical (Y:C) | 0 0.25 0.5 0.75 1 |
SEVERITY COEFFICIENT () | COEFFICIENT VALUE | NUMERICAL VALUE |
---|---|---|
Reversibility () | None (R:N) Partial (R:P) Full (R:F) | 1 0.5 0.25 |
Scope () | Changed (S:C) Unchanged (S:U) | 1.25 1 |
Severity | Score Value Range |
---|---|
Critical | 9 - 10 |
High | 7 - 8.9 |
Medium | 4.5 - 6.9 |
Low | 2 - 4.4 |
Informational | 0 - 1.9 |
Critical
0
High
0
Medium
0
Low
0
Informational
1
Security analysis | Risk level | Remediation Date |
---|---|---|
Outdated Solidity compiler version | Informational | Acknowledged - 03/13/2025 |
// Informational
The MultiRewards
smart contract is written under an older Solidity compiler version (pragma solidity 0.5.17). There are some known issues with this compiler version, as indicated by Slither results.
Newer compiler releases, particularly 0.8.x, include additional features, optimizations and built-in safety checks, such safe arithmetic.
Remaining on an older compiler version can potentially miss out on these enhancements and any relevant bug fixes introduced in newer releases. It means the code will not benefit from the latest language-level security improvements and best practices.
It is recommended to update the Solidity compiler version to the current 0.8.x. Adjust the test scenarios if needed to ensure the contract's functionality remains correct under new compiler settings.
ACKNOWLEDGED: The Moonwell team has acknowledged this finding.
Halborn used automated testing techniques to enhance the coverage of certain areas of the smart contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn verified the smart contracts in the repository and was able to compile them correctly into their ABIs and binary format, Slither was run against the contracts. This tool can statically verify mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs across the entire code-base.
All issues identified by Slither were proved to be false positives or have been added to the issue list in this report.
Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.
// Download the full report
Curve Multirewards
* Use Google Chrome for best results
** Check "Background Graphics" in the print settings if needed