Prepared by:
HALBORN
Last Updated 03/18/2025
Date of Engagement: February 3rd, 2025 - February 5th, 2025
100% of all REPORTED Findings have been addressed
All findings
2
Critical
0
High
0
Medium
0
Low
1
Informational
1
Moonwell engaged Halborn to conduct a security assessment on their smart contracts beginning on February 3rd, 2025 and ending on February 5th. The security assessment was scoped to the smart contracts provided in the moonwell-fi/moonwell-contracts-v2 GitHub repository. Commit hash and further details can be found in the Scope section of this report.
Halborn was provided three days for the engagement, and assigned one full-time security engineer to review the security of the smart contracts in scope. The engineer is a blockchain and smart contract security expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of multiple blockchain protocols.
The purpose of the assessment is to:
Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.
In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which were acknowledged and accepted by the Moonwell team. The main ones are the following:
Implement validation checks for the returned oracle data when using the AggregatorV3Interface. Ensure that the latest returned timestamp is within the defined heartbeat interval for the requested asset.
Add an explicit check in the initiateSale() function to ensure that _miniAuctionPeriod > 1.
Create an access-controlled function, using SafeERC20 in order to allow the owner to withdraw unsold tokens after the sale.
Halborn performed a combination of manual and automated security testing to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is recommended to uncover flaws in logic, process, and implementation; automated testing techniques help enhance coverage of the code and can quickly identify items that do not follow the security best practices. The following phases and associated tools were used during the assessment:
Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither).
Testnet deployment (Foundry).
| EXPLOITABILITY METRIC () | METRIC VALUE | NUMERICAL VALUE |
|---|---|---|
| Attack Origin (AO) | Arbitrary (AO:A) Specific (AO:S) | 1 0.2 |
| Attack Cost (AC) | Low (AC:L) Medium (AC:M) High (AC:H) | 1 0.67 0.33 |
| Attack Complexity (AX) | Low (AX:L) Medium (AX:M) High (AX:H) | 1 0.67 0.33 |
| IMPACT METRIC () | METRIC VALUE | NUMERICAL VALUE |
|---|---|---|
| Confidentiality (C) | None (C:N) Low (C:L) Medium (C:M) High (C:H) Critical (C:C) | 0 0.25 0.5 0.75 1 |
| Integrity (I) | None (I:N) Low (I:L) Medium (I:M) High (I:H) Critical (I:C) | 0 0.25 0.5 0.75 1 |
| Availability (A) | None (A:N) Low (A:L) Medium (A:M) High (A:H) Critical (A:C) | 0 0.25 0.5 0.75 1 |
| Deposit (D) | None (D:N) Low (D:L) Medium (D:M) High (D:H) Critical (D:C) | 0 0.25 0.5 0.75 1 |
| Yield (Y) | None (Y:N) Low (Y:L) Medium (Y:M) High (Y:H) Critical (Y:C) | 0 0.25 0.5 0.75 1 |
| SEVERITY COEFFICIENT () | COEFFICIENT VALUE | NUMERICAL VALUE |
|---|---|---|
| Reversibility () | None (R:N) Partial (R:P) Full (R:F) | 1 0.5 0.25 |
| Scope () | Changed (S:C) Unchanged (S:U) | 1.25 1 |
| Severity | Score Value Range |
|---|---|
| Critical | 9 - 10 |
| High | 7 - 8.9 |
| Medium | 4.5 - 6.9 |
| Low | 2 - 4.4 |
| Informational | 0 - 1.9 |
Critical
0
High
0
Medium
0
Low
1
Informational
1
| Security analysis | Risk level | Remediation Date |
|---|---|---|
| Missing oracle data staleness check | Low | Risk Accepted - 02/12/2025 |
| Division by zero | Informational | Acknowledged - 02/12/2025 |
//
//
Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.
// Download the full report
Moonwell // SCA (Reserve + ERC20HoldingDeposit)
* Use Google Chrome for best results
** Check "Background Graphics" in the print settings if needed