Prepared by:
HALBORN
Last Updated 04/02/2024
Date of Engagement by: March 12th, 2024 - March 19th, 2024
100% of all REPORTED Findings have been addressed
All findings
3
Critical
0
High
0
Medium
0
Low
0
Informational
3
Moonwell
engaged Halborn
to conduct a security assessment on their smart contracts beginning on March 12th and ending on March 19th. The security assessment was scoped to the smart contracts provided in the moonwell-fi/mtoken-fixes GitHub repository. Commit hashes and further details can be found in the Scope section of this report.
Halborn
was provided 1 week for the engagement and assigned 1 full-time security engineer to review the security of the smart contracts in scope. The engineer is a blockchain and smart contract security expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of multiple blockchain protocols.
The purpose of the assessment is to:
Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.
In summary, Halborn identified some informational, non-critical issues as described in this report.
Halborn performed a combination of manual and automated security testing to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is recommended to uncover flaws in logic, process, and implementation; automated testing techniques help enhance coverage of the code and can quickly identify items that do not follow the security best practices. The following phases and associated tools were used during the assessment:
Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph
).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to identify any arithmetic-related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither
).
Testnet deployment (Foundry
).
The contracts in scope were thoroughly and manually analyzed for potential vulnerabilities and bugs, as well as known optimizations and best practices when developing Smart Contracts in Solidity.
While no major vulnerabilities were found within the scope and time frame provided, it's always important to highlight good practices that were identified during the assessment, which contribute positively to the security maturity of the contracts in-scope, such as:
- Thorough documentation using NatSpec.
- Correct handling of legacy Solidity versions, including using SafeMath
and applying verifications to avoid arithmetic errors such as overflow and underflow.
- Access controls in functions that should only be called by the Governance are well-structured and provide an additional layer of security.
These security practices are applied industry-wide and should be considered in future implementations and developments.
EXPLOITABILIY METRIC () | METRIC VALUE | NUMERICAL VALUE |
---|---|---|
Attack Origin (AO) | Arbitrary (AO:A) Specific (AO:S) | 1 0.2 |
Attack Cost (AC) | Low (AC:L) Medium (AC:M) High (AC:H) | 1 0.67 0.33 |
Attack Complexity (AX) | Low (AX:L) Medium (AX:M) High (AX:H) | 1 0.67 0.33 |
IMPACT METRIC () | METRIC VALUE | NUMERICAL VALUE |
---|---|---|
Confidentiality (C) | None (I:N) Low (I:L) Medium (I:M) High (I:H) Critical (I:C) | 0 0.25 0.5 0.75 1 |
Integrity (I) | None (I:N) Low (I:L) Medium (I:M) High (I:H) Critical (I:C) | 0 0.25 0.5 0.75 1 |
Availability (A) | None (A:N) Low (A:L) Medium (A:M) High (A:H) Critical (A:C) | 0 0.25 0.5 0.75 1 |
Deposit (D) | None (D:N) Low (D:L) Medium (D:M) High (D:H) Critical (D:C) | 0 0.25 0.5 0.75 1 |
Yield (Y) | None (Y:N) Low (Y:L) Medium (Y:M) High (Y:H) Critical (Y:C) | 0 0.25 0.5 0.75 1 |
SEVERITY COEFFICIENT () | COEFFICIENT VALUE | NUMERICAL VALUE |
---|---|---|
Reversibility () | None (R:N) Partial (R:P) Full (R:F) | 1 0.5 0.25 |
Scope () | Changed (S:C) Unchanged (S:U) | 1.25 1 |
Severity | Score Value Range |
---|---|
Critical | 9 - 10 |
High | 7 - 8.9 |
Medium | 4.5 - 6.9 |
Low | 2 - 4.4 |
Informational | 0 - 1.9 |
Critical
0
High
0
Medium
0
Low
0
Informational
3
Security analysis | Risk level | Remediation Date |
---|---|---|
Events Are Missing `indexed` Attribute | Informational | Acknowledged - 03/19/2024 |
Function not used internally can be marked `external` | Informational | Acknowledged - 03/19/2024 |
Use custom errors | Informational | Acknowledged - 03/19/2024 |
// Informational
Indexed event fields make the data more quickly accessible to off-chain tools that parse events, and add them to a special data structure known as “topics” instead of the data part of the log. A topic can only hold a single word (32 bytes) so if you use a reference type for an indexed argument, the Keccak-256 hash of the value is stored as a topic instead.
Each event can use up to three indexed fields. If there are fewer than three fields, all of the fields can be indexed. It is important to note that each index field costs extra gas during emission, so it's not necessarily best to index the maximum allowed fields per event (three indexed fields).
This is specially recommended when gas usage is not particularly of concern for the emission of the events in question, and the benefits of querying those fields in an easier and straight-forward manner surpasses the downsides of gas usage increase.
- src/MErc20DelegateFixer.sol [Line: 12]
event UserFixed(address, address, uint256);
- src/MErc20DelegateFixer.sol [Line: 15]
event BadDebtRepayed(uint256);
- src/MErc20DelegateFixer.sol [Line: 18]
event BadDebtRepayedWithReserves(
It is recommended to add the indexed
keyword when declaring events, considering the following example:
event Indexed(
address indexed from,
bytes32 indexed id,
uint indexed value
);
ACKNOWLEDGED: The Moonwell team acknowledged this issue.
// Informational
In the mip-m17.sol
contract, the description()
function has its visibility set to public
. Considering it is not called in the context of the smart contract, the function visibility can be changed to external
, in order to enhance gas consumption.
- src/proposals/mips/mip-m17/mip-m17.sol [Line: 28]
function description() public view override returns (string memory) {
As public
functions have wider access, they inherently are less gas-effective than external
functions.
It is recommended to change the function visibility from public
to external
, as follows:
function description() external view override returns (string memory) {
ACKNOWLEDGED: The Moonwell team acknowledged this issue.
// Informational
In Solidity smart contract development, replacing hard-coded revert message strings with the Error()
syntax is an optimization strategy that can significantly reduce gas costs. Hard-coded strings, stored on the blockchain, increase the size and cost of deploying and executing contracts.
The Error()
syntax allows for the definition of reusable, parameterized custom errors, leading to a more efficient use of storage and reduced gas consumption. This approach not only optimizes gas usage during deployment and interaction with the contract but also enhances code maintainability and readability by providing clearer, context-specific error information.
It is recommended to replace hard-coded revert strings in require
statements for custom errors, which can be done following the logic below.
1. Standard require statement (to be replaced):
require(condition, "Condition not met");
2. Declare the error definition to state
error ConditionNotMet();
3. As currently is not possible to use custom errors in combination with require
statements, the standard syntax is:
if (!condition) revert ConditionNotMet();
More information about this topic in Official Solidity Documentation.
ACKNOWLEDGED: The Moonwell team acknowledged this issue.
I won't add Outdated compiler version
issue as this constraint is inherent to the use of CompoundV2 and its dependencies as base.
Halborn used automated testing techniques to enhance the coverage of certain areas of the smart contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn verified the smart contracts in the repository and was able to compile them correctly into their abis and binary format, Slither was run against the contracts. This tool can statically verify mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs across the entire code-base.
The security team assessed all findings identified by the Slither software, however, findings with severity Information
and Optimization
are not included in the below results for the sake of report readability.
The findings obtained as a result of the Slither scan were reviewed, and they were not included in the report because they were determined false positives.
Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.
// Download the full report
* Use Google Chrome for best results
** Check "Background Graphics" in the print settings if needed